Введен в действие Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 23 сентября 1997 г. N 332

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛЬ

МЕТОД ФОТОЭЛЕКТРИЧЕСКОГО СПЕКТРАЛЬНОГО АНАЛИЗА

Steel. Method of photoelectric spectral analysis

FOCT 18895-97

Группа В39

МКС 77.080.40; ОКСТУ 0809

Дата введения 1 января 1998 года

Предисловие

1. Разработан Российской Федерацией, Межгосударственным техническим комитетом МТК 145 "Методы контроля металлопродукции".

Внесен Госстандартом России.

2. Принят Межгосударственным советом по стандартизации, метрологии и сертификации (Протокол N 11-97 от 25 апреля 1997 г.).

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации		
Азербайджанская Республика Республика Армения Республика Белоруссия Республика Казахстан Российская Федерация Республика Таджикистан Туркменистан Украина	Азгосстандарт Армгосстандарт Госстандарт Белоруссии Госстандарт Республики Казахстан Госстандарт России Таджикгосстандарт Главная государственная инспекция Туркменистана Госстандарт Украины		

- 3. Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 23 сентября 1997 г. N 332 межгосударственный стандарт ГОСТ 18895-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.
 - 4. Взамен ГОСТ 18895-81.

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает фотоэлектрический спектральный метод определения в

стали массовой доли элементов, %:

```
от 0,010 до 2,0;
углерода
                                       " 0,002 " 0,20;
серы
                                       " 0,002 " 0,20;
фосфора
                                       " 0,010 " 2,5;
кремния
                                       " 0,050 " 5,0;
марганца
                                       " 0,010 " 10,0;
хрома
                                       " 0,010 " 10,0;
никеля
                                       " 0,010 " 5,0;
кобальта
                                       " 0,010 " 2,0;
" 0,005 " 2,0;
" 0,005 " 0,20;
" 0,010 " 5,0;
мели
алюминия
мышьяка
молибдена
                                       " 0,020 " 5,0;
вольфрама
                                       " 0,005 " 5,0;
" 0,005 " 2,0;
ванадия
титана
                                       " 0,010 " 2,0;
ниобия
                                       " 0,001 " 0,10;
бора
                                       " 0,005 " 0,50.
циркония
```

Метод основан на возбуждении атомов элементов стали электрическим разрядом, разложении излучения в спектр, измерении аналитических сигналов, пропорциональных интенсивности или логарифму интенсивности спектральных линий, и последующем определении массовых долей элементов с помощью градуировочных характеристик.

2. НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.315-97. ГСИ. Стандартные образцы состава и свойств веществ и материалов. Основные положения

ГОСТ 859-78. Медь. Марки

ГОСТ 2424-83. Круги шлифовальные. Технические условия

ГОСТ 6456-82. Шкурка шлифовальная бумажная. Технические условия

ГОСТ 7565-81 (ИСО 377-2-89). Чугун, сталь и сплавы. Метод отбора проб для химического состава

ГОСТ 10157-79. Аргон газообразный и жидкий. Технические условия

ГОСТ 21963-82. Круги отрезные. Технические условия.

3. ОТБОР И ПОДГОТОВКА ПРОБ

Отбор и подготовка проб - по ГОСТ 7565 с дополнением. Поверхность пробы, предназначенную для обыскривания, затачивают на плоскость. На поверхности не допускаются раковины, шлаковые включения, цвета побежалости и другие дефекты.

4. АППАРАТУРА И МАТЕРИАЛЫ

Фотоэлектрические вакуумные и воздушные установки индивидуальной градуировки.

Отрезной станок типов 8230 и 2К337.

Шлифовальный станок модели 3Е881.

Точильно-шлифовальный станок (обдирочно-наждачный) типа ТЩ-500.

Универсальный станок для заточки электродов модели КП-35.

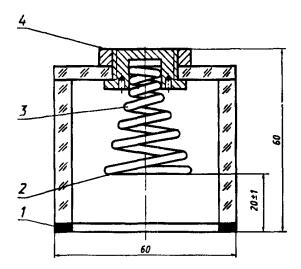
Токарно-винторезный станок модели 1604.

Отрезные диски 400 х 4 х 32 мм по ГОСТ 21963.

Электрокорундовые абразивные круги с керамической связкой, зернистостью N 50, твердостью CT-2, размером 300 x 40 x 70 мм по FOCT = 2424.

Шкурка шлифовальная бумажная типа 2 на бумаге марки БШ-200 (П7) из нормального электрокорунда зернистостью 40 - 60 по ГОСТ 6456.

Аргон газообразный высшего сорта по ГОСТ 10157.


Электропечь для сушки и чистки аргона типа СУОЛ-0.4.4/12-Н2-У4.2.

В случае применения вакуумных фотоэлектрических установок используют постоянные

электроды-прутки серебряные, медные и вольфрамовые диаметром 5 - 6 мм или вольфрамовую проволоку диаметром 1 - 2 мм длиною не менее 50 мм.

Для воздушных фотоэлектрических установок используют медные прутки марок M00, M1, M2 по ГОСТ 859 и угольные стержни марки C3 диаметром 6 мм и длиной не менее 50 мм.

Для определения массовой доли элементов в прокатной стали применяют вакуумные и воздушные фотоэлектрические установки. Если образец не перекрывает полностью отверстие в штативе вакуумной установки, применяют контактную камеру (см. рисунок 1) или другое приспособление, ограничивающее отверстие в столе штатива.

1 - прокладки; 2 - пластина; 3 - пружина; 4 - контакт

Рисунок 1. Контактная камера для вакуумного спектрометра

Допускается применение другой аппаратуры, оборудования и материалов, обеспечивающих точность анализа, предусмотренную настоящим стандартом.

5. ПОДГОТОВКА К АНАЛИЗУ

- 5.1. Подготовку установки к выполнению измерений проводят в соответствии с инструкцией по обслуживанию и эксплуатации установки.
- 5.2. Градуировку каждой фотоэлектрической установки осуществляют экспериментально при внедрении методики выполнения измерений с помощью стандартных образцов (СО) состава, аттестованных в соответствии с ГОСТ 8.315.

Допускается применение однородных проб, проанализированных стандартизованными или аттестованными методиками химического анализа.

5.3. При первичной градуировке выполняют не менее пяти серий измерений в разные дни работы фотоэлектрической установки. В серии для каждого СО проводят по две пары параллельных (выполняемых одно за другим на одной поверхности) измерений. Порядок пар параллельных измерений для всех СО в серии рандомезируют. Вычисляют среднее арифметическое значение аналитических сигналов по серии и среднее арифметическое значение аналитических сигналов для пяти серий измерений для каждого СО.

Расчетным или графическим способом устанавливают градуировочные характеристики, которые выражают в виде формулы, графика или таблицы. Градуировочные характеристики используют для определения массовых долей контролируемых элементов непосредственно или с учетом влияния химического состава и физико-химических свойств объекта.

Для установок, сопряженных с ЭВМ, процедура градуировки определяется программным обеспечением. При этом точность результатов анализа должна удовлетворять требованиям настоящего стандарта.

- 5.4. При повторной градуировке допускается сокращение числа серий до двух.
- 5.5. В случае оперативной градуировки (получения градуировочных характеристик с каждой партией анализируемых проб) выполняют не менее двух параллельных измерений для каждого СО.

6. ПРОВЕДЕНИЕ АНАЛИЗА

- 6.1. Условия проведения анализа на фотоэлектрических установках приведены в Приложении А (таблицы А.1, А.2).
- 6.2. Длины волн спектральных линий и диапазон значений массовых долей элементов приведены в Приложении A (таблица A.3).
- 6.3. Выполняют два параллельных измерения значений аналитического сигнала для каждого контролируемого элемента анализируемой пробы в условиях, принятых при градуировке. Допускается выполнять три параллельных измерения.

7. ОБРАБОТКА РЕЗУЛЬТАТОВ

7.1. Если расхождение значений аналитического сигнала, выраженное в единицах массовой доли не более $d_{\rm cx}$ (таблица 1) для двух параллельных измерений и $1,2d_{\rm cx}$ для трех параллельных измерений, вычисляют среднее арифметическое значение.

Таблица 1 Нормы и нормативы контроля точности

Элемент	Массовая доля	-	Допускаемое расхождение, %			ие, %
	элементов, %	ность резуль- тата анализа Дельта, %	между резуль- татами двух парал- лельных измерений d сх	между резуль- татами анализа, выпол- ненными в разных условиях d в	между резуль- татами спект- рального и хими- ческого анализов d	между результатами воспроизве- дения характерис- тик СО, полученных при установ- лении гра- дуировочных характерис- тик, и их значениями при контроле стабильности градуировоч- ных характе- ристик дельта ст
Углерод	0,010 - 0,020 0,020 - 0,050 0,050 - 0,10 0,10 - 0,20 0,20 - 0,50 0,50 - 1,00 1,00 - 2,0	0,004 0,008 0,012 0,016 0,024 0,04 0,06	0,003 0,007 0,010 0,013 0,020 0,03 0,05	0,005 0,010 0,015 0,020 0,030 0,05 0,07	0,005 0,008 0,012 0,017 0,025 0,04 0,06	0,003 0,006 0,009 0,012 0,018 0,03 0,04
Cepa	0,002 - 0,005 0,005 - 0,010 0,010 - 0,020 0,020 - 0,050 0,050 - 0,10 0,10 - 0,20	0,002 0,002 0,003 0,008 0,012 0,016	0,002 0,003 0,003 0,008 0,013 0,017	0,002 0,003 0,004 0,010 0,015 0,020	0,002 0,003 0,004 0,008 0,012 0,016	0,001 0,002 0,002 0,006 0,009 0,012
Фосфор	0,002 - 0,005	0,002	0,002	0,002	0,002	0,001

	0,005 - 0,010	0,002	0,002	0,003	0,003	0,002
	0,010 - 0,020	0,003	0,003	0,004	0,004	0,002
	0,020 - 0,050	0,006	0,005	0,007	0,006	0,004
	0,050 - 0,10	0,008	0,007	0,010	0,009	0,006
	0,10 - 0,20	0,012	0,010	0,015	0,013	0,009
Кремний	0,010 - 0,020	0,004	0,003	0,005	0,005	0,003
	0,020 - 0,050	0,008	0,007	0,010	0,008	0,006
	0,050 - 0,10	0,012	0,010	0,015	0,013	0,009
	0,10 - 0,20	0,020	0,017	0,025	0,022	0,015
	0,20 - 0,50	0,03	0,03	0,04	0,03	0,02
	0,50 - 1,00	0,06	0,05	0,07	0,06	0,04
	1,00 - 2,5	0,08	0,07	0,10	0,08	0,06
Марганец	0,050 - 0,10	0,008	0,007	0,010	0,010	0,006
	0,10 - 0,20	0,016	0,013	0,020	0,018	0,012
	0,20 - 0,50	0,024	0,020	0,030	0,030	0,018
	0,50 - 1,00	0,04	0,03	0,05	0,04	0,03
	1,00 - 2,0	0,08	0,07	0,10	0,08	0,06
	2,0 - 5,0	0,12	0,10	0,15	0,12	0,09
Хром	0,010 - 0,020	0,003	0,003	0,004	0,004	0,002
	0,020 - 0,050	0,005	0,004	0,006	0,006	0,004
	0,050 - 0,10	0,008	0,007	0,010	0,010	0,006
	0,10 - 0,20	0,016	0,013	0,020	0,017	0,012
	0,20 - 0,50	0,024	0,020	0,030	0,030	0,018
	0,50 - 1,00	0,04	0,03	0,05	0,04	0,03
	1,00 - 2,0	0,08	0,07	0,10	0,08	0,06
	2,0 - 5,0	0,12	0,10	0,15	0,12	0,09
	5,0 - 10,0	0,16	0,13	0,20	0,16	0,12
Никель	0,010 - 0,020	0,004	0,003	0,005	0,005	0,003
	0,020 - 0,050	0,008	0,007	0,010	0,008	0,006
	0,050 - 0,10	0,012	0,010	0,015	0,013	0,009
	0,10 - 0,20	0,016	0,013	0,020	0,018	0,012
	0,20 - 0,50	0,03	0,03	0,04	0,03	0,02
	0,50 - 1,00	0,06	0,05	0,07	0,06	0,04
	1,00 - 2,0	0,08	0,07	0,10	0,08	0,06
	2,0 - 5,0	0,12	0,10	0,15	0,12	0,09
	5,0 - 10,0	0,16	0,13	0,20	0,16	0,12
Кобальт	0,010 - 0,020	0,004	0,003	0,005	0,005	0,003
	0,020 - 0,050	0,006	0,005	0,007	0,007	0,004
	0,050 - 0,10	0,012	0,010	0,015	0,013	0,009
	0,10 - 0,20	0,016	0,013	0,020	0,018	0,012
	0,20 - 0,50	0,03	0,03	0,04	0,03	0,02
	0,50 - 1,00	0,05	0,04	0,06	0,05	0,04
	1,00 - 2,0	0,08	0,07	0,10	0,08	0,06
	2,0 - 5,0	0,12	0,10	0,15	0,12	0,09
Медь	0,010 - 0,020	0,004	0,003	0,005	0,005	0,003
	0,020 - 0,050	0,008	0,007	0,010	0,009	0,006
	0,050 - 0,10	0,012	0,010	0,015	0,014	0,009
	0,10 - 0,20	0,020	0,017	0,025	0,023	0,015
	0,20 - 0,50	0,03	0,03	0,04	0,04	0,02
	0,50 - 1,00	0,06	0,05	0,07	0,06	0,04
	1,00 - 2,0	0,08	0,07	0,10	0,09	0,06
Алюминий	0,005 - 0,010	0,003	0,003	0,004	0,004	0,002
	0,010 - 0,020	0,006	0,005	0,007	0,006	0,004
	0,020 - 0,050	0,012	0,010	0,015	0,012	0,009
	0,050 - 0,10	0,020	0,017	0,025	0,022	0,015
	0,10 - 0,20	0,03	0,03	0,04	0,04	0,02
	0,20 - 0,50	0,05	0,04	0,06	0,06	0,04
	0,50 - 1,00	0,08	0,07	0,10	0,09	0,06
	1,00 - 2,0	0,12	0,10	0,15	0,13	0,09

I	1	1	I	ı	1	1 1
Мышьяк	0,005 - 0,010	0,002	0,002	0,003	0,003	0,002
	0,010 - 0,020	0,003	0,003	0,004	0,004	0,002
	0,020 - 0,050	0,006	0,005	0,007	0,007	0,004
	0,050 - 0,10	0,012	0,010	0,015	0,015	0,009
	0,10 - 0,20	0,016	0,013	0,020	0,020	0,012
Молибден	0,010 - 0,020	0,004	0,003	0,005	0,005	0,003
	0,020 - 0,050	0,008	0,007	0,010	0,009	0,006
	0,050 - 0,10	0,012	0,010	0,015	0,013	0,009
	0,10 - 0,20	0,016	0,013	0,020	0,019	0,012
	0,20 - 0,50	0,03	0,03	0,04	0,04	0,02
	0,50 - 1,00	0,05	0,04	0,06	0,05	0,04
	1,00 - 2,0	0,08	0,07	0,10	0,08	0,06
	2,0 - 5,0	0,12	0,10	0,15	0,13	0,09
Вольфрам	0,020 - 0,050	0,008	0,007	0,010	0,010	0,006
	0,050 - 0,10	0,012	0,010	0,015	0,016	0,009
	0,10 - 0,20	0,020	0,017	0,025	0,025	0,015
	0,20 - 0,50	0,03	0,03	0,04	0,04	0,02
	0,50 - 1,00	0,06	0,05	0,08	0,07	0,05
	1,00 - 2,0	0,12	0,10	0,15	0,12	0,09
	2,0 - 5,0	0,16	0,13	0,20	0,17	0,12
Ванадий	0,005 - 0,010	0,002	0,002	0,003	0,003	0,002
	0,010 - 0,020	0,004	0,003	0,005	0,005	0,003
	0,020 - 0,050	0,008	0,007	0,010	0,009	0,006
	0,050 - 0,10	0,012	0,010	0,015	0,014	0,009
	0,10 - 0,20	0,016	0,013	0,020	0,020	0,012
	0,20 - 0,50	0,03	0,03	0,04	0,04	0,02
	0,50 - 1,00	0,05	0,04	0,06	0,05	0,04
	1,00 - 2,0	0,08	0,07	0,10	0,09	0,06
	2,0 - 5,0	0,12	0,10	0,15	0,13	0,09
Титан	0,005 - 0,010	0,004	0,003	0,005	0,004	0,003
	0,010 - 0,020	0,008	0,007	0,010	0,008	0,006
	0,020 - 0,050	0,012	0,010	0,015	0,012	0,009
	0,050 - 0,10	0,016	0,013	0,020	0,017	0,012
	0,10 - 0,20	0,03	0,03	0,04	0,03	0,02
	0,20 - 0,50	0,05	0,04	0,06	0,05	0,04
	0,50 - 1,00	0,08	0,07	0,10	0,08	0,06
	1,00 - 2,0	0,12	0,10	0,15	0,12	0,09
Ниобий	0,010 - 0,020	0,004	0,003	0,005	0,005	0,003
	0,020 - 0,050	0,008	0,007	0,010	0,009	0,006
	0,050 - 0,10	0,016	0,013	0,020	0,017	0,012
	0,10 - 0,20	0,024	0,020	0,03	0,03	0,018
	0,20 - 0,50	0,04	0,03	0,05	0,04	0,03
	0,50 - 1,00	0,08	0,07	0,10	0,08	0,06
	1,00 - 2,0	0,12	0,10	0,15	0,12	0,09
Бор	0,001 - 0,002	0,001	0,001	0,001	0,001	0,001
	0,002 - 0,005	0,002	0,001	0,002	0,002	0,001
	0,005 - 0,010	0,003	0,003	0,004	0,003	0,002
	0,010 - 0,020	0,005	0,004	0,006	0,005	0,004
	0,020 - 0,050	0,008	0,007	0,010	0,008	0,006
	0,050 - 0,10	0,012	0,010	0,015	0,013	0,009
Цирконий	0,005 - 0,010	0,002	0,002	0,003	0,003	0,002
	0,010 - 0,020	0,004	0,003	0,005	0,005	0,003
	0,020 - 0,050	0,007	0,005	0,008	0,008	0,005
	0,050 - 0,10	0,012	0,010	0,015	0,013	0,009
	0,10 - 0,20	0,016	0,013	0,020	0,018	0,012
	0,20 - 0,50	0,020	0,017	0,025	0,025	0,015

Допускается выражать значение аналитического сигнала и расхождений параллельных измерений в единицах шкалы отсчетно-регистрирующего прибора фотоэлектрической установки. В этом случае $d_{\rm cx}$ выражают в единицах шкалы отсчетно-регистрирующего прибора с помощью установленных градуировочных характеристик.

- В случае превышения расхождений параллельных измерений допускаемых значений $d_{\rm cx}$ $(1,2d_{\rm cx})$ анализ повторяют.
- 7.2. За окончательный результат анализа принимают среднее арифметическое двух или трех параллельных измерений, соответствующих требованиям 7.1.
 - 7.3. Контроль стабильности результатов анализа
- 7.3.1. Контроль стабильности градуировочных характеристик для верхнего и нижнего пределов диапазона измерений осуществляют не реже одного раза в смену с помощью СО или однородных проб. Допускается проводить контроль только для верхнего предела или середины диапазона измерений.
- Для СО (пробы) выполняют два параллельных измерения аналитического сигнала. Значения аналитического сигнала N выражают в единицах массовой доли или шкалы отсчетно-регистрирующего прибора фотоэлектрической установки.
- 7.3.2. Если расхождение значений аналитического сигнала для параллельных измерений не превышает $d_{\rm cx}$ (таблица 1), вычисляют среднее арифметическое значение \overline{N} и разность $\Delta N = N_0 \overline{N}$, где N_0 значение аналитического сигнала для СО (пробы), полученное способом, указанным в 5.3.
- 7.3.3. Если ΔN превышает допускаемое значение $\delta_{\rm cr}$ (таблица 1), измерения повторяют в соответствии с 7.3.1. Если при повторных измерениях ΔN превышает допускаемое значение, осуществляют восстановление градуировочной характеристики. Порядок восстановления градуировочной характеристики для каждой установки определяется ее аналитическими и конструктивными возможностями.
- 7.3.4. Внеочередной контроль стабильности осуществляют после ремонта или профилактики фотоэлектрической установки.
 - 7.3.5. При оперативной градуировке контроль стабильности не проводят.
- 7.3.6. Для установок, сопряженных с ЭВМ, процедура контроля стабильности определяется программным обеспечением. При этом точность результатов анализа должна удовлетворять требованиям настоящего стандарта.
 - 7.4. Контроль воспроизводимости результатов анализа
- 7.4.1. Контроль воспроизводимости результатов спектрального анализа выполняют определением массовых долей элементов в проанализированных ранее пробах.
- 7.4.2. Число повторных определений должно быть не менее 0,3% общего числа определений за контролируемый период.
- 7.4.3. Воспроизводимость измерений считают удовлетворительной, если число расхождений первичного и повторного анализа, превышающих допускаемое значение $d_{_{\rm B}}$ (таблица 1), составляет не более 5% числа проконтролированных результатов.
 - 7.5. Контроль правильности результатов анализа
- 7.5.1. Контроль правильности проводят выборочным сравнением результатов спектрального анализа проб с результатами химического анализа, выполняемого стандартизованными или аттестованными методиками.
- 7.5.2. Число результатов при контроле правильности должно быть не менее 0,3% общего числа определений за контролируемый период.
- 7.5.3. Правильность измерений считают удовлетворительной, если число расхождений результатов спектрального и химического анализа, превышающих допускаемое значение $d_{_{\Pi}}$ (таблица 1), составляет не более 5% числа проконтролированных результатов.
- 7.5.4. Допускается выполнять контроль правильности методом спектрального анализа на основе воспроизведения значений массовых долей элементов в СО предприятия.

7.6. При выполнении требований настоящего стандарта погрешность результата анализа (при доверительной вероятности 0,95) не должна превышать предельного значения Δ (таблица 1).

Приложение А (рекомендуемое)

УСЛОВИЯ ПРОВЕДЕНИЯ АНАЛИЗА НА ФОТОЭЛЕКТРИЧЕСКИХ УСТАНОВКАХ

Таблица А.1

Контролируемый	Воздушны	е фотоэлек	грические установки	Спектрометры	
параметр	дФС-10М. Генератор ГЭУ-1	МФС-4 и МФС-6. Генератор АРКУС	ДФС-36. Генератор УГЭ-4	ФЭС-1 и ФСПА-У, генераторы ГЭУ-1 и ИВС-28. Дуга переменного тока	
Напряжение, В	220	220	Режимы генератора: дуга постоянного тока от 1,5 до 20 А; дуга переменного тока различной скважности и полярности от 1,5 до 20 А; низковольтная искра 250 - 300 В; высоковольтная искра от 7500 до 15000 В; импульсный разряд большой мощности	220	
Частота, Гц	50	50	-	50	
	1,5 - 5,0	1,5 - 5,0	_	1,5 - 5,0	
Аналитический		1,5 - 2,0	l .	1,5 - 2,0	
промежуток, мм		,	, ,	, ,	
Ширина	0,05	0,04;	0,05 и 0,10	0,02 - 0,04	
выходных	и 0,10	0,075;			
щелей, мм		0,10			
Время обжига, с	5 - 10	5 - 10	5 - 10	5 - 10	
Время	20 - 30	20 - 30	20 - 30	20 - 30	
экспозиции, с					
Электроды	Используют медные прутки диаметром 6 мм и угольные стержни марки С-3. Стержни затачивают на полусферу с радиусом кривизны 3 - 4 мм либо на усеченный конус под углом				
	45 - 90° с диаметром площадки 1,5 - 2,0 мм				
Примечание. Параметры выбираются в пределах указанных значений.					

Контролируемый	Вакуумные фотоэлектрические установки					
параметр	ДФС-41. Генератор ИВС-2.		АРЛ 3100			
	ивс-2. Высоко- вольтная	Генератор	о Полисурс	Генератор Минисурс	Генера- тор	
	искра	Высоко- вольтная искра	Низко- вольтная искра	П. Низко- вольтная дуга	FS 139. Низко- вольтная дуга	
Напряжение, В	650	15000	600 - 1000	500 и 800	500	
Емкость, мкФ Индуктивность, мкГн Частота, Гц Сопротивление, Ом Ширина выходных щелей, мм Время продувки камеры аргоном, с Аналитический промежуток, мм Продувка камеры аргоном, л/мин Время обжига, с Время экспозиции, с	50 и 150 0,1 - 16,9 0,04; 0,075; 0,10 - - - 7 - 20 7 - 20 Используют и	• •	15 50 и 360 50 0,2 и 18,0 0,038; 0,05; 0,075 10 - 15 5,0 4 - 6 20 20 бряные, медны	ие и вольфр	•	
	диаметром 5 - 6 мм, заточенные на конус 90°, или вольфрамовую проволоку диаметром 1 - 2 мм, заточенную на плоскость					

Таблица А.3

Определяемый элемент	Длина волны определяемого элемента, нм	Мешающий элемент	Диапазон значений массовой доли элементов, %
Углерод	193,09	-	0,010 - 2,0
	229,69	Железо	0,050 - 2,0
	426,73	-	0,020 - 2,0
Cepa	180,73	Никель	0,002 - 0,20
	182,04	-	0,002 - 0,20
	481,55	-	0,002 - 0,20
	545,39	-	0,002 - 0,20
Фосфор	177,50	-	0,002 - 0,20
	178,29	Углерод	0,002 - 0,20
	214,91	Железо, вольфрам	0,002 - 0,20
Кремний	181,69	-	0,10 - 2,5
	185,07	-	0,010 - 1,00
	198,84	-	0,010 - 2,5
	212,41	-	0,010 - 2,5

	243,52	Железо, вольфрам	0,10 - 2,5
	250,69	Железо, ванадий	0,010 - 1,5
	251,61	Ванадий	0,010 - 1,5
	288,16	-	0,010 - 2,0
	390,55	-	0,050 - 2,5
Марганец	192,13 263,82 293,31 294,92 478,34 482,35	- - - - -	0,010 - 10,0 0,10 - 3,0 0,005 - 5,0 0,050 - 3,0 0,050 - 3,0 0,050 - 3,0
Хром	205,56 206,55 267,72 275,29 279,22 298,92 314,72 425,43 462,62 520,60 534,58	- Вольфрам Вольфрам Вольфрам Ванадий Кобальт, вольфрам - Вольфрам	0,010 - 5,0 0,010 - 5,0 0,005 - 5,0 0,010 - 5,0 0,20 - 5,0 3,0 - 30,0 0,10 - 5,0 0,10 - 5,0 0,010 - 2,0 0,010 - 2,0 0,050 - 5,0
Никель	218,55 225,39 227,02 231,60 231,72 309,71 341,48 351,51 376,95 385,83 388,97 390,71 471,44	Вольфрам Железо Марганец, титан Титан - Ниобий, молибден Титан, молибден	3,0 - 30,0 0,010 - 5,0 0,010 - 5,0 0,005 - 5,0 0,005 - 5,0 0,050 - 5,0 0,010 - 1,00 0,010 - 1,00 3,0 - 30,0 0,010 - 2,0 3,0 - 30,0 0,050 - 5,0
Медь	200,04	-	0,001 - 5,0
	211,21	-	0,20 - 2,0
	219,23	-	0,010 - 2,0
	223,01	-	0,10 - 2,0
	224,26	-	0,10 - 2,0
	282,44	-	0,050 - 2,0
	324,75	Ниобий, марганец	0,010 - 2,0
	327,40	Ниобий	0,005 - 5,0
	510,55	Вольфрам	0,010 - 2,0
Алюминий	186,28	-	0,0005 - 5,0
	199,05	-	0,005 - 1,00
	257,51	-	0,010 - 1,00
	308,22	Ванадий	0,010 - 1,00
	394,40	-	0,005 - 0,50
	396,15	Молибден, цирконий	0,001 - 5,0
Мышьяк	189,04	Углерод, кремний	0,005 - 0,20
	193,76	-	0,005 - 0,20
	197,26	-	0,005 - 0,20
	234,98	Ванадий	0,010 - 0,20
	286,05	-	0,020 - 0,20
Молибден	202,03	Железо	0,002 - 5,0
	281,62	Алюминий	0,050 - 5,0
	317,04	Железо	0,010 - 2,0
	386,41	-	0,010 - 2,0

	476,02 553,31 603,07	- Вольфрам -	0,10 - 5,0 0,10 - 5,0 0,10 - 5,0
Вольфрам	202,92 207,91 209,86 220,45 239,71 258,69 330,00 364,65 400,88 465,99 484,35	- - - Алюминий - - Железо Ванадий Железо, титан -	0,10 - 5,0 0,050 - 5,0 0,10 - 5,0 0,050 - 5,0 0,10 - 5,0 0,10 - 5,0 0,10 - 5,0 0,10 - 5,0 0,020 - 5,0 0,020 - 5,0 0,10 - 5,0
Ванадий	214,01 266,33 271,57 290,82 311,07 311,84 312,29 313,03 411,18 437,92	- Свинец Вольфрам, ниобий - Титан, железо - - Вольфрам Хром	0,10 - 5,0 0,10 - 5,0 0,010 - 5,0 0,002 - 5,0 0,001 - 5,0 0,010 - 0,50 0,010 - 2,5 0,010 - 2,5 0,10 - 2,5 0,010 - 2,5
Титан	190,80 316,85 324,20 334,94 337,28 363,55 453,32	- - - Ниобий Ниобий - -	0,005 - 0,50 0,005 - 2,0 0,005 - 2,0 0,005 - 2,0 0,001 - 5,0 0,030 - 2,0 0,005 - 2,0
Ниобий	212,65 295,09 309,42 319,50 320,64 351,54 358,03 372,05 410,09 534,42	- Ванадий, вольфрам Медь Вольфрам, хром Никель - Вольфрам, железо Железо	0,10 - 2,0 0,020 - 2,0 0,020 - 2,0 0,003 - 5,0 0,10 - 2,0 0,020 - 2,0 0,020 - 2,0 0,020 - 2,0 0,020 - 2,0 0,020 - 2,0
Бор	182,59 208,96 249,68	- - Вольфрам, железо	0,001 - 0,10 0,001 - 0,10 0,001 - 0,10
Цирконий	257,13 339,19 343,82 360,12	Медь Хром - -	0,005 - 0,50 0,005 - 0,50 0,005 - 1,00 0,010 - 0,50
Кобальт	228,62 248,34 340,51 341,23 345,35 346,28 373,59 374,99 384,55	Железо Молибден Ванадий, молибден, титан Ниобий, молибден Церий, молибден, ванадий Хром, никель Молибден, ванадий Церий, мышьяк Ванадий, цирконий	0,010 - 2,0 0,40 - 4,0 0,010 - 2,0 0,010 - 2,0 0,010 - 2,0 0,010 - 2,0 2,0 - 10,0 2,0 - 10,0 2,0 - 10,0
	187,75		Линия сравнения

241,33	_	
249,33	-	
262,83	Вольфрам	
271,44	Кобальт, ванадий	
272,02	Вольфрам	
281,33	-	
282,33	-	
297,01	-	
300,96	-	
309,16	-	
438,35	_	
440,48	-	
447,60	_	

Примечание. Линии подбираются конкретно для аналитической методики в зависимости от их интенсивности, типа фотоэлектрической установки, наложения других линий, возможности размещения выходных щелей на каретках прибора.