Введен в действие Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 13 августа 2002 г. N 300-ст

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ ПЛОТНОСТИ

State system for ensuring the uniformity of measurements. State verification schedule for means of measuring density

FOCT 8.024-2002

Группа Т84

ОКСТУ 0008

MKC 17.020

Дата введения 1 марта 2003 года

Предисловие

1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 206 "Эталоны и поверочные схемы"; Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева" (ФГУП ВНИИМ) Госстандарта России

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 22 от 30 мая 2002 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Армения	Армстандарт
Республика Беларусь	Госстандарт Республики Беларусь
Республика Казахстан	Госстандарт Республики Казахстан
Кыргызская Республика	Кыргызстандарт

Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикстандарт
Туркменистан	Главгосслужба "Туркменстандартлары"
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 13 августа 2002 г. N 300-ст межгосударственный стандарт ГОСТ 8.024-2002 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 марта 2003 г.

4 B3AMEH ΓΟCT 8.024-75

1. Область применения

Настоящий стандарт распространяется на государственную поверочную схему для средств измерений плотности в диапазоне от 0,5 до 23 000 кг/м³ и устанавливает порядок передачи размера единицы плотности - килограмма на кубический метр (кг/м³) от государственного первичного эталона единицы плотности при помощи вторичных и рабочих эталонов рабочим средствам измерений с указанием погрешностей и основных методов поверки.

2. Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.021-84 Государственная система обеспечения единства измерений. Государственный первичный эталон и государственная поверочная схема для средств измерений массы

ГОСТ 8.578-2002 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах

3. Определения

В настоящем стандарте применяются следующие термины с соответствующими определениями:

- 3.1 плотность: Величина, определяемая отношением массы вещества к занимаемому им объему.
- 3.2 относительная плотность морской воды: Отношение плотности морской воды к плотности дистиллированной воды при температуре плюс 17,5 °C.
- 3.3 объемная доля компонента в растворе: Отношение объема компонента, содержащегося в растворе, к общему объему раствора.
- 3.4 массовая доля компонента в растворе: Отношение массы компонента, содержащегося в растворе, к общей массе раствора.
- 3.5 молярная доля компонента в газе: Отношение количества вещества компонента, содержащегося в газе, к общему количеству вещества газа.
- 3.6 ареометр: Прибор специальной формы, который, плавая в жидкости и погружаясь в нее на ту или иную часть своего объема, служит для определения плотности жидкости или величины, пропорциональной плотности жидкости.
- 3.7 пикнометр: Сосуд цилиндрической или сферической формы с известным значением вместимости, предназначенный для определения плотности жидкости, газа или твердых тел путем взвешивания этого сосуда, заполненного исследуемой жидкостью или газом, или с помещенным в него твердым телом.

4. Первичный эталон

- 4.1 Государственный первичный эталон предназначен для воспроизведения, хранения единицы плотности и передачи ее размера при помощи вторичных и рабочих эталонов рабочим средствам измерений с целью обеспечения единства измерений.
- 4.2 Государственный первичный эталон единицы плотности состоит из комплекса следующих средств измерений:
- эталонный стеклянный поплавок N 21951 с номинальным значением плотности $1,0200944\cdot10^3$ кг/м 3 ;
 - эталонная сфера из ситалла диаметром 90 мм N 1;
 - установка для гидростатического взвешивания (компаратор).
- 4.3 Государственный первичный эталон обеспечивает воспроизведение единицы плотности со среднеквадратическим отклонением результата измерений S, не превышающим $4\cdot10^{-4}$ кг/м 3 .

Неисключенная систематическая погрешность θ не превышает 2,1·10⁻³ кг/м³.

5. Вторичный эталон

- 5.1 В качестве вторичного эталона применяют наборы тел цилиндрической формы, изготовленные из монокристалла кремния, или наборы стеклянных поплавков в диапазоне измерений от 650 до 2000 кг/м³.
- 5.2 Среднеквадратические отклонения суммарной погрешности S_{Σ} составляют от $3\cdot 10^{-3}$ до $8\cdot 10^{-3}$ кг/м 3 .
- 5.3 Вторичный эталон применяют для калибровки и поверки рабочих эталонов и высокоточных рабочих средств измерений сличением при помощи компаратора или методом косвенных измерений.

6. Рабочие эталоны

- 6.1 Рабочие эталоны, заимствованные из других государственных поверочных схем
- В качестве рабочих эталонов, заимствованных из других государственных поверочных схем, применяют весы эталонные в диапазоне измерений от 0 до 6 кг и гири эталонные в диапазоне измерений от $1 \cdot 10^{-6}$ до 6 кг по ГОСТ 8.021, а также эталоны сравнения чистые газы с номинальным значением молярной доли 99,99% по ГОСТ 8.578.
- 6.1.1 Эталоны, заимствованные из других поверочных схем, применяют для передачи размера единицы плотности рабочим эталонам: пикнометрам и рабочим пикнометрам методом косвенных измерений; рабочим плотномерам газа методом прямых измерений.
 - 6.2 Рабочие эталоны 1-го разряда

В качестве рабочих эталонов 1-го разряда применяют ареометры для морской воды в диапазоне измерений относительной плотности от 0,922 до 1,040 единиц; ареометры типа АК в диапазоне измерений плотности от 1560 до 1620 кг/м³; ареометры общего назначения в диапазоне измерений плотности от 650 до 1840 кг/м³; ареометры для спирта в диапазоне измерений объемной доли спирта от 0% до 100%; ареометры для молока в диапазоне измерений плотности от 1010 до 1040 кг/м³; ареометры-сахаромеры в диапазоне измерений массовой доли сахара от 0% до 75%; плотномеры автоматические поточные и лабораторные в диапазоне измерений плотности от 300 до 3000 кг/м³; пикнометры в диапазоне измерений от 0,5 до 23000 кг/м³; стандартные образцы плотности жидкости в диапазоне измерений от 650 до 3000 кг/м³.

Доверительные границы погрешности измерений рабочих эталонов δ при доверительной вероятности 0,95 составляют от 0,001 до 0,5 кг/м 3 .

- 6.2.1 Рабочие эталоны применяют для поверки рабочих средств измерений плотности непосредственным сличением или методом прямых измерений.
 - 7. Рабочие средства измерений (СИ)
 - 7.1 В качестве рабочих СИ плотности применяют ареометры, пикнометры, автоматические

плотномеры для жидких и газообразных сред.

- 7.2 Пределы допускаемых абсолютных погрешностей Δ рабочих средств измерений плотности составляют от 0,001 до 20 кг/м³.
- 7.3 Соотношение доверительной погрешности рабочих эталонов и предела допускаемых погрешностей рабочих СИ плотности должно составлять не более 1:3.

Государственная поверочная схема для средств измерений плотности

Обозначения: S_{ϵ} , δ_{ϵ} - погрешности передачи размера единицы.