Введен в действие Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 25 декабря 2001 г. N 595-ст

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

чистота промышленная

КЛАССЫ ЧИСТОТЫ ЖИДКОСТЕЙ

Industrial cleanliness. Grades of liquids purity

ΓΟCT 17216-2001

Группа Т58

MKC 23.100 25.060 75.120

ОКП 02 5000 75 0000

Дата введения 1 января 2003 года

Предисловие

1. Разработан Техническим комитетом по стандартизации ТК 184 "Обеспечение промышленной чистоты".

Внесен Госстандартом России.

2. Принят Межгосударственным советом по стандартизации, метрологии и сертификации (Протокол N 19 от 24 мая 2001 г.).

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Армения Республика Беларусь Республика Казахстан Киргизская Республика Республика Молдова Российская Федерация Республика Таджикистан Туркменистан Республика Узбекистан Украина	Азгосстандарт Армгосстандарт Госстандарт Республики Беларусь Госстандарт Республики Казахстан Киргизстандарт Молдовастандарт Госстандарт России Таджикстандарт Главгосслужба "Туркменстандартлары" Узгосстандарт Госпотребстандарт Украины

- 3. Приложения А, Б настоящего стандарта идентичны основным положениям международного стандарта ИСО 4406-99 "Гидропривод объемный. Рабочие жидкости. Метод кодирования уровня загрязненности твердыми частицами".
 - 4. Постановлением Государственного комитета Российской Федерации по стандартизации и

метрологии от 25 декабря 2001 г. N 595-ст межгосударственный стандарт ГОСТ 17216-2001 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2003 г.

Взамен ГОСТ 17216-71.

1. Область применения

Стандарт устанавливает классификацию промышленной чистоты (ПЧ) жидкостей, применяемых при изготовлении, эксплуатации и ремонте машин и приборов (рабочих жидкостей гидравлических систем привода и управления машин, приводов инструментов; смазочных масел, жидких топлив, растворителей), а также кодирование ПЧ жидкостей, используемых в системах гидропривода.

Настоящий стандарт применяют при установлении норм ПЧ и указании классов чистоты жидкости в технических требованиях к жидкостям при их поставке, транспортировании и хранении в нормативной, конструкторской и технологической документации на изготовление, эксплуатацию и ремонт машин, приборов и инструментов.

2. Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

- 2.1. Частица загрязнителя: твердый, жидкий или многофазный объект, в том числе микроорганизм, размерами до 200 мкм (за исключением волокон, длина которых может достигать 300 мкм).
- 2.2. Размер частицы: максимальный линейный размер проекции частицы в плоскости наблюдения оптического или электронного микроскопа или эквивалентный диаметр частицы, определенный иными средствами измерений.
- 2.3. Эквивалентный диаметр частицы: диаметр сферической частицы с известными свойствами, оказывающей такое же воздействие на средство измерений, что и измеряемая частица.
- 2.4. Волокно: загрязнитель, длина которого 200 300 мкм и превышающая толщину загрязнителя не менее чем в десять раз.

3. Основные положения

3.1. Классы чистоты жидкостей выбирают по таблице 1.

Таблица 1

Зависимость класса чистоты жидкостей от числа частиц загрязнителя

Класс	Число частиц загрязнителя в (100 +/- 0,5) см3 жидкости при размере частиц, мкм, не более						Масса загряз-			
жид- костей	от 0,5 до 1	св. 1 до 2	св. 2 до 5			св. 25 до 50	св. 50 до 100	св. 100 до 200	во- локна	нителей, %, не более
00	800	400	32	8	4	1	OT-	AO	AO	Не
0	1600	800	63	16	8	2	сут- ствие	Отсут-		норми- руется
1		1600	125	32	16	3		CIBNE	OT-	
2			250	63	32	4	1		ствие	
3				125	63	8	2			
4				250	125	12	3	<u> </u>		

5		500	250	25	4	1		
6		1000	500	50	6	2	1	0,000032
7		2000	1000	100	12	4	2	0,000064
8		4000	2000	200	25	6	3	0,000125
9	Не нормируется	8000	4000	400	50	12	4	0,00025
10		16000	8000	800	100	25	5	0,0005
11		31500	16000	1600	200	50	10	0,001
12		63000	31500	3150	400	100	20	0,002
13			63000	6300	800	200	40	0,004
14			125000	12500	1600	400	80	0,008
15				25000	3150	800	160	0,016
16				50000	6300	1600	315	0,032
17					12500	3150	630	0,064

Примечания

- 1. "Отсутствие" означает, что при взятии одной пробы жидкости частицы заданного размера не обнаружены или при взятии нескольких проб общее число обнаруженных частиц меньше числа взятых проб.
 - 2. "АО" абсолютное отсутствие частиц загрязнителя.
- 3. Зависимость класса чистоты жидкостей от массы содержащегося в ней загрязнителя с учетом числа частиц загрязнителя в жидкости является справочной. Массы приведены для частиц загрязнителя со средней плотностью

 $4 \times 10 \,$ кг/м3 и плотностью жидкости $1 \times 10 \,$ кг/м3.

Допускается по усмотрению разработчика и согласованию с заказчиком уровень загрязненности жидкости для гидропривода устанавливать и кодировать в соответствии с Приложением А.

3.2. Допускается методику определения класса чистоты жидкостей в соответствии с таблицей 1 устанавливать разработчику продукции с учетом всех стадий жизненного цикла продукции.

Примечание. Метод определения класса чистоты жидкости по индексу загрязненности приведен в Приложении В.

Приложение A (рекомендуемое)

КОДИРОВАНИЕ ПРОМЫШЛЕННОЙ ЧИСТОТЫ ЖИДКОСТЕЙ В СИСТЕМАХ ГИДРОПРИВОДОВ СОГЛАСНО ИСО 4406 [1]

А.1. Назначение и область применения

Настоящее приложение устанавливает коды, применяемые при определении числа твердых частиц в рабочих жидкостях, используемых в системах гидропривода.

А.2. Определение кода

А.2.1. Общие положения

Цель кода - упростить представление данных о числе частиц отнесением частиц к классам или кодам, в которых увеличение одного кода удваивает уровень загрязненности последующего.

Первоначальный код в соответствии с ИСО 4406 [2] устанавливал два размера представления частиц >= 5 и >= 15 мкм. Размеры представления частиц были пересмотрены и изменены для

использования другой методики калибровки автоматических счетчиков частиц. Установлены размеры >= 4, >= 6 и >= 14 мкм; последние два размера частиц эквивалентны 5 и 15 мкм. Использован метод калибровки автоматических счетчиков частиц по ИСО 4402 [3]. ИСО 4402 [3] заменен на ИСО 11171 [4].

Измерение частиц оптическим микроскопом по ИСО 4407 [5] устанавливает размер частицы как равный ее наибольшему размеру, в то время как автоматический счетчик частиц дает размер эквивалентной частицы по площади ее поперечного сечения, поэтому в большинстве случаев возникает значительное отличие от результатов подсчета частиц микроскопом. Размеры частиц, представленные для измерения микроскопом, >= 5 и >= 15 мкм не изменяются.

Подсчеты частиц зависят от множества факторов: отбора и подготовки проб, точности счетчика, пробоотборников и их чистоты. При отборе проб внимание должно быть сосредоточено на том, чтобы проба в пробоотборнике соответствовала жидкости в системе.

А.2.2. Основные компоненты числового кода

Код, соответствующий уровню загрязненности, состоит из трех классификационных чисел, позволяющих следующее дифференцирование размеров и распределение частиц и представляющих:

- первое число частиц, равных или больших 4 мкм в 1 см3 рабочей жидкости;
- второе число частиц, равных или больших 6 мкм в 1 см3 рабочей жидкости;
- третье число частиц, равных или больших 16 мкм в 1 см3 рабочей жидкости.

При подсчете частиц микроскопом код состоит из двух классификационных чисел 5 и 15 мкм.

- А.2.3. Распределение классификационных чисел
- А.2.3.1. Классификационные числа распределяют по числу подсчитанных частиц, содержащихся в 1 см3 рабочей жидкости (см. таблицу А.1).

Таблица А.1 Распределение классификационных чисел

Число частиц в 1 см3		Классификационное число
OT	до (включительно)	
2500000		> 28
1300000	2600000	28
640000	1300000	27
320000	640000	26
160000	320000	25
80000	160000	24
40000	80000	23
20000	4000	22
10000	20000	21
5000	10000	20
2500	5000	19
1300	2500	18
640	1300	17
320	640	16
160	320	15
80	160	14
40	80	13
20	40	12
10	20	11
5	10	10
2,5	5	9
1,3	2 , 5	8
0,64	1,3	7
0,32	0,64	6
0,16	0,32	5
0,08	0,16	4
0,04	0,08	3
0,02	0,04	2
0,01	0,02	1
0,00	0,01	< 1

А.2.3.2. Для обеспечения приемлемого соответствия классификационного числа каждому шагу в таблице А.1 соответствует шаговое отношение, равное двум шагам (в основном) для граф наибольшего и наименьшего числа частиц в 1 см3.

Воспроизводимость ниже классификационного числа 8 зависит от реального числа подсчитанных частиц в пробе жидкости. Результат подсчета должен быть больше 20 частиц. Если это невозможно, то поступают согласно 2.4.7.

- А.2.4. Определение числового кода на основе анализа автоматических счетчиков частиц
- А.2.4.1. Подсчет частиц проводят в соответствии с ИСО 11500 [6] или другим признанным методом, используя автоматический счетчик частиц, калиброванный по ИСО 11171 [4].
- А.2.4.2. Первое классификационное число устанавливают по числу частиц, равных или больших 4 мкм.
- А.2.4.3. Второе классификационное число устанавливают по числу частиц, равных или больших 6 мкм.
- A.2.4.4. Третье классификационное число устанавливают по числу частиц, равных или больших 14 мкм.
 - А.2.4.5. Числа записывают последовательно и разделяют наклонной чертой.

Пример - Код 22/18/13 означает, что в 1 см3 данной пробы жидкости содержится от 20000 до 40000 частиц, равных или больших 4 мкм; от 1300 до 2500 частиц, равных или больших 6 мкм; от 40 до 80 частиц, равных или больших 15 мкм.

А.2.4.6. При записи числового кода допускается применять обозначения "*" - слишком много частиц для подсчета, поэтому они не считались, или "-" (не считаются).

Примеры

- а) */19/14 в пробе слишком много частиц, равных или больших 4 мкм, для подсчета;
- б) -/19/14 частицы, равные или большие 4 мкм, не считались.
- А.2.4.7. Когда результат подсчета частиц в 1 см3 меньше 20, классификационное число указывают символом >=.

Пример - Код 14/12/>= 7 означает, что в 1 см3 данной пробы жидкости содержится > 80 и <= 160 частиц, равных или больших 4 мкм, и > 20 и <= 40 частиц, равных или больших 6 мкм. Третья часть кода ">= 7" означает, что в 1 см3 содержится > 0,64 и <= 1,3 частиц, равных или больших 14 мкм, т.е. подсчитано меньше 20 частиц, что снижает статистическую достоверность. Поэтому 14 мкм часть кода в действительности могла быть выше 7. Вследствие этого снижается значимость частиц 14 мкм, т.е. счет частиц принимают > 1,3 частиц в 1 см3.

- А.2.5. Определение числового кода при измерении микроскопом
- А.2.5.1. Подсчет частиц в соответствии с ИСО 4407 [5].
- А.2.5.2. Первое классификационное число устанавливают по числу частиц, равных или больших 5 мкм.
- A.2.5.3. Второе классификационное число устанавливают по числу частиц, равных или больших 15 мкм.
- А.2.5.4. Для согласования расчетов, полученных автоматическим счетчиком частиц, код устанавливает три классификационных числа с обозначением первого: "-".

Пример кода для согласования расчетов: -/18/13.

А.3. Форма записи при ссылке на настоящий стандарт

В отчетах по испытаниям, каталогах и проспектах используют следующую ссылку: "Код твердых загрязнителей соответствует ГОСТ 17216-2001, приложение А которого идентично стандарту ИСО 4406 "Гидропривод объемный. Рабочие жидкости. Метод кодирования уровня загрязненности твердыми частицами".

ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ КОДОВОГО ЧИСЛА

Код загрязнителя, определенного автоматическим счетчиком частиц, устанавливают подбором первого классификационного числа по общему числу частиц, равных или больших 4 мкм; подбором второго классификационного числа по общему числу частиц, равных или больших 6 мкм, и подбором третьего классификационного числа по общему числу частиц, равных или больших 14 мкм. Затем три числа записывают последовательно и разделяют наклонной чертой. Например, 22/18/13 (см. рисунок Б.1). При определении частиц с помощью микроскопа для первого классификационного числа используют знак "-", второе и третье устанавливают подсчетом 5 и 15 мкм частиц соответственно.

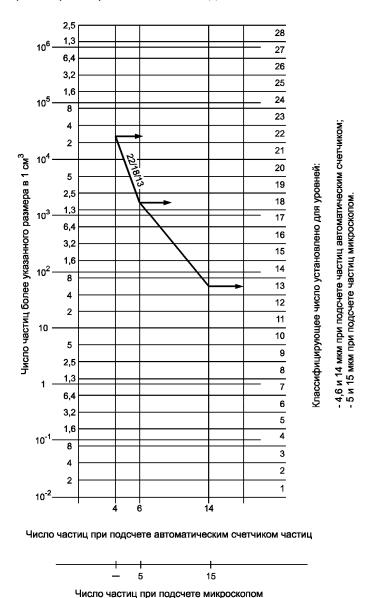


Рисунок Б.1. Графическое представление кодового числа

Интерполяция частиц допускается, экстраполяция - не допускается.

МЕТОД ОПРЕДЕЛЕНИЯ КЛАССА ЧИСТОТЫ ПО ИНДЕКСУ ЗАГРЯЗНЕННОСТИ

Класс чистоты гидравлической жидкости, соответствующей классам 8 - 14, допускается определять по индексу загрязненности жидкости.

Индекс загрязненности z вычисляют по формуле

$$z = 0.001(10n_{10} + 25n_{50} + 50n_{50} + 100n_{100} + 200n_{200} + 400n_{B}),$$

где 0,001 - масштабный коэффициент (введен для удобства пользования индексом загрязненности);

 n_{10} , n_{25} , n_{50} , n_{100} , n_{200} , $n_{_{\rm B}}$ - число частиц и волокон в 100 см3 жидкости с размером частиц в интервалах 5 - 10, 10 - 25, 50 - 100, 100 - 200 мкм.

Класс чистоты жидкости устанавливают по индексу загрязненности, затем в таблице В.1 выбирают ближайшее наибольшее его значение.

Таблица В.1

Индекс загрязненности z	105	210	415	830	1645	3275	6520
Класс чистоты	8	9	10	11	12	13	14

Значение класса чистоты по индексу загрязненности устанавливают по таблице В.1. Для классов чистоты 13 - 14 число частиц размером 5 - 10 мкм не нормируют. Поэтому значение

 $n_{5-10}\,$ для классов 13 - 14 получено экстраполированием распределения частиц интервала 5 - 10 в предыдущих классах.

Приложение Г (справочное)

ПРИМЕРНОЕ СООТНОШЕНИЕ МЕЖДУ КЛАССАМИ И КОДАМИ ЧИСТОТЫ

Класс чистоты по таблице 1	Код по ИСО 4406
00	6/5/2
0	7/5/3
1	8/6/4
2	9/7/5
3	-/8/6
4	-/9/7
5	-/10/8
6	-/11/9
7	-/12/9

i .	I I
8	-/13/10
9	-/14/12
10	-/15/13
11	-/16/13
12	-/17/14
13 <*>	-/18/16
14 <*>	-/19/16
15 <*>	-/20/18
16 <*>	-/21/19
17 <*>	-/22/20

<*> Поскольку число частиц размером менее 10 мкм не нормируется, по

Приложение Д (справочное)

БИБЛИОГРАФИЯ

[1] ИСО 4406-99	Гидропривод объемный. Рабочие жидкости. Метод кодирования
	уровня загрязненности твердыми частицами
[2] ИСО 4406-87	Гидропривод объемный. Рабочие жидкости. Метод кодирования
	уровня загрязненности твердыми частицами
[3] ИСО 4402-91	Гидропривод объемный. Калибровка автоматических счетчиков
	частиц для жидкостей
[4] ИСО 11171-99	Гидропривод объемный. Калибровка автоматических счетчиков
	частиц для жидкостей
[5] ИСО 4407-91	Гидроприводы. Определение загрязненности рабочей жидкости
	методом счета частиц под микроскопом при проходящем свете
[6] ИСО 11500-97	Гидропривод объемный. Определение загрязненности рабочей
	жидкости с помощью автоматических счетчиков частиц

таблице 1 настоящего стандарта сравнение проведено только по числу частиц

размером более 14 (15) мкм.