Введен в действие Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 4 июня 1998 г. N 244

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НЕФТЕПРОДУКТЫ

РАСЧЕТ ИНДЕКСА ВЯЗКОСТИ ПО КИНЕМАТИЧЕСКОЙ ВЯЗКОСТИ

Petroleum products. Calculation of viscosity index from kinematic viscosity

ГОСТ 25371-97 (ИСО 2909-81)

Группа Б29

MKC 75.080

ОКСТУ 0209

Дата введения 1 июля 1999 года

Предисловие

1. Разработан Техническим комитетом ТК 31 "Нефтяные топлива и смазочные материалы" (ВНИИНП).

Внесен Техническим секретариатом Межгосударственного совета по стандартизации, метрологии и сертификации.

2. Принят Межгосударственным советом по стандартизации, метрологии и сертификации (Протокол N 12 от 21 ноября 1997 г.).

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Республика Азербайджан Республика Армения Республика Белоруссия Республика Казахстан Украина Республика Молдова Киргизская Республика Туркменистан	Азгосстандарт Армгосстандарт Госстандарт Белоруссии Госстандарт Республики Казахстан Госстандарт Украины Молдовастандарт Киргизстандарт Главная Государственная инспекция Туркменистана
Республика Таджикистан	Таджикгосстандарт

- 3. Настоящий стандарт представляет собой полный аутентичный текст международного стандарта ИСО 2909-81 "Нефтепродукты. Расчет индекса вязкости по кинематической вязкости" с дополнительными требованиями, отражающими потребности народного хозяйства.
- 4. Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 4 июня 1998 г. N 244 межгосударственный стандарт ГОСТ 25371-97

введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1999 г.

- 5. Взамен ГОСТ 25371-82.
- 6. Издание (январь 2004 г.) с поправкой (ИУС 1-2000).

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1. Настоящий стандарт устанавливает два метода расчета индекса вязкости нефтепродуктов и родственных им продуктов в зависимости от кинематической вязкости при 40 и 100 °C <*>:
 - А с индексом вязкости от 0 до 100 включительно;
 - В с индексом вязкости от 100 и выше.

<*> Результаты расчета индекса вязкости (VI) по кинематической вязкости при 40 и 100 °С практически идентичны результатам системы расчета индекса вязкости с использованием кинематической вязкости при 37,78 и 98,89 °С.

Дополнения, отражающие потребности народного хозяйства, выделены курсивом.

1.2. Таблица 3, представленная в настоящем стандарте, применяется для нефтепродуктов с кинематической вязкостью при 100 °C от 2 до 70 мм2/с <**>. Для расчета индекса вязкости нефтепродуктов с кинематической вязкостью выше 70 мм2/с при 100 °C приводятся формулы 1 и 2.

- <**> В настоящем стандарте кинематическая вязкость выражается в квадратных миллиметрах на секунду (мм2/с), кратных единице системы СИ (м2/с). На практике обычно применяется сантистокс (сСт). 1 сСт = 1 мм2/c.
- 1.3. В качестве эталона принята вязкость дистиллированной воды при 20 °C, равная 1,0038 мм2/с. Определение кинематической вязкости нефтепродуктов должно проводиться в соответствии с ГОСТ 33.

2. НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использована ссылка на ГОСТ 33-2000 (ИСО 3104-94). Нефтепродукты. Прозрачные и непрозрачные жидкости. Определение кинематической вязкости и расчет динамической вязкости.

3. ОПРЕДЕЛЕНИЕ

В настоящем стандарте использован следующий термин и определение:

Индекс вязкости (VI) - расчетная величина, которая характеризует изменение вязкости нефтепродуктов в зависимости от температуры.

4. МЕТОД А (ДЛЯ НЕФТЕПРОДУКТОВ С ИНДЕКСОМ ВЯЗКОСТИ ОТ 0 ДО 100 ВКЛЮЧИТЕЛЬНО)

- 4.1. Расчет
- 4.1.1. Если кинематическая вязкость нефтепродуктов при 100 °C ниже или равна 70 мм2/с, значения, соответствующие L и D, определяют по таблице 3. Если значения в таблице 3 отсутствуют, но находятся в диапазоне таблицы, их рассчитывают методом линейной интерполяции.
- 4.1.2. Если кинематическая вязкость нефтепродуктов при 100 °C выше 70 мм2/с, L и D вычисляют по формулам:

$$L = 0.8353 Y^2 + 14.67Y - 216$$
; (1)

$$D = 0,6669 Y^2 + 2,82 Y - 119$$
, (2)

где L - кинематическая вязкость при 40 °C нефтепродукта с индексом вязкости 0, обладающего

той же кинематической вязкостью при 100 °C, что и испытуемый нефтепродукт, мм2/с;

- Y кинематическая вязкость при 100 °C нефтепродукта, индекс вязкости которого требуется определить (D = L H), mm2/c;
- H кинематическая вязкость при 40 °C нефтепродукта с индексом вязкости 100, обладающего той же кинематической вязкостью при 100 °C, что и испытуемый нефтепродукт, мм2/с.
 - 4.1.3. Индекс вязкости VI нефтепродукта вычисляют по формулам:

$$VI = \frac{L - U}{L - H} \cdot 100$$
; (3)

$$VI = \frac{L - U}{D} \cdot 100 \text{ (4)}$$

где U - кинематическая вязкость при 40 °C нефтепродукта, индекс вязкости которого требуется определить (D = L - H), мм2/с.

4.1.4. Пример расчета VI

Кинематическая вязкость нефтепродуктов при 40 °C равна 73,30 мм2/с, при 100 °C - 8,86 мм2/с. По таблице 3 (интерполяцией) L = 119,94; D = 50,476.

Полученные данные подставляют в формулу (4) и округляют до целого числа

$$VI = \frac{119,94 - 73,30}{50,476} \cdot 100 = 92,40 \; ;$$

$$VI = 92$$
.

Примечание. Если результат выражен целым числом с пятью десятыми, его округляют до наиболее близкого четного числа. Например, 89,5 должно быть округлено до 90.

4.1.5. Для испытуемых продуктов, кинематическая вязкость которых при 100 °C меньше 2 мм2/с (сСт), значения L, D и H вычисляют по формулам:

$$L = Y(1,5215 + 0,7092Y);$$

$$D = Y(0,17129 + 0,11441Y);$$

$$H = Y(1,35017 + 0,59482Y).$$

4.2. Выражение результатов

Записывают индекс вязкости VI с точностью до целого числа.

4.3. Точность

Точность расчета индекса вязкости зависит от точности двух независимых значений кинематической вязкости, по которым он рассчитывается. Результаты двух расчетов считаются недействительными, если разность значений кинематической вязкости превышает допуск по сходимости и воспроизводимости в соответствии с ГОСТ 33.

Точность метода, указанная в таблице 1, полностью основана на точности метода по ГОСТ 33.

Таблица 1

Кинематическая	Точность			
вязкость при 100°C, мм2/с	VI = 0		VI = 100	
	Сходимость	Воспроизводимость	Сходимость	Воспроизводимость
4	2,4	4,8	1,7	3,4

6	2,1	4,2	1,3	2,6
8	1,9	3,7	1,1	2,2
15	1,5	3,0	0,7	1,4
30	1,2	2 , 5	0,4	0,9
50	1,1	2,2	0,3	0,7

Точность может быть определена для любого показателя кинематической вязкости или индекса методом линейной интерполяции.

Показатели сходимости и воспроизводимости приводятся с 95%-ным уровнем доверительной вероятности.

4.3.1. Пример расчета точности определения

Расчет точности определения для масел, кинематическая вязкость которых при $100 \, ^{\circ}\text{C} = 12 \,$ мм2/с и индекс вязкости = 90.

По таблице 1 вычисляют сходимость и воспроизводимость для кинематической вязкости 12 мм2/с интерполяцией между вязкостями 8 и 15 мм2/с.

Индекс вязкости = 0 Индекс вязкости = 100
Сходимость Воспроизводимость Сходимость Воспроизводимость
$$1,7$$
 $3,3$ $0,9$ $1,7$ По этим данным интерполяцией получают результаты для $VI=90$ C Сходимость Воспроизводимость $1,0$ $1,9$

5. МЕТОД В (ДЛЯ НЕФТЕПРОДУКТОВ С ИНДЕКСОМ ВЯЗКОСТИ ОТ 100 И ВЫШЕ)

- 5.1. Расчет
- 5.1.1 Индекс вязкости VI вычисляют по формулам:

$$VI = \{ [(antilog N) - 1]/0,00715 \} + 100; (5)$$

 $N = (log H - log U]/log Y, (6)$

где U и Y - кинематические вязкости при 40 и 100 $^{\circ}$ С соответственно для испытуемых нефтепродуктов;

H - кинематическая вязкость при 40 °C нефтепродукта с индексом вязкости 100, обладающего той же кинематической вязкостью при 100 °C, что и испытуемый нефтепродукт. Значение Н определяют по таблице 3. Если кинематическая вязкость нефтепродукта при 100 °C выше 70 мм2/с, Н вычисляют по формуле

$$H = 0.1684Y^2 + 11.85Y - 97. (7)$$

5.1.2. Примеры расчета VI

1) Кинематическая вязкость нефтепродукта при 40 °C равна 22,83 мм2/с, при 100 °C - 5,05 мм2/с. По таблице 3 (интерполяцией) H = 28,97.

Полученные данные подставляют в формулу (6).

$$N = \frac{\log 28,97 - \log 22,83}{\log 5,05} = 0,14708.$$

Полученное значение подставляют в формулу (5) и округляют до целого числа.

$$VI = \frac{(\text{antilog0}, 14708) - 1}{0.00715} + 100 = \frac{0,40307 - 1}{0.00715} + 100 = 156,37$$

2) Кинематическая вязкость нефтепродукта при 40 °C равна 53,47 мм2/с, при 100 °C - 7,80 мм2/с. По таблице 3: H = 57,31.

Полученные данные подставляют в формулу (6).

$$N = \frac{\log 57, 31 - \log 53, 47}{\log 7, 80} = 0,03376.$$

Полученные значения подставляют в формулу (5) и округляют до целого числа.

$$VI = \frac{(\text{anti} \log 0,03376) - 1}{0,00715} + \frac{1,08084 - 1}{0,00715} + 100 = 111,31;$$

$$VI = 111.$$

Примечание. Если результат выражен целым числом с пятью десятыми, его округляют до наиболее близкого четного числа. Например, 115,5 должно быть округлено до 116.

5.2. Выражение результатов

Записывают индекс вязкости (VI) с точностью до целого числа.

5.3. Точность

Точность расчета индекса вязкости зависит от точности двух независимых величин кинематической вязкости, по которым он рассчитывается. Результаты двух расчетов считаются недействительными, если расхождение между ними превышает допуски по сходимости и воспроизводимости, указанные в ГОСТ 33.

Точность метода, указанная в таблице 2, основана полностью на точности метода ГОСТ 33.

Таблица 2

Кинематическая	Точность			
вязкость при 100 °C, мм2/с	VI = 100		VI = 200	
MM2/C	Сходимость	Воспроизводимость	Сходимость	Воспроизводимость
4 6 8 15 30 50	1,4 1,1 1,0 0,7 0,6 0,5	2,8 2,2 2,0 1,5 1,2	2,2 1,7 1,5 1,1 0,9 0,8	4,4 3,5 3,0 2,3 1,8 1,6

Точность может быть определена для любого показателя кинематической вязкости или индекса вязкости линейной интерполяцией.

Показатели сходимости и воспроизводимости приводятся с 95%-ным уровнем доверительной вероятности.

5.3.1. Пример расчета точности определения

Расчет точности определения для масел, кинематическая вязкость которых при $100 \, ^{\circ}\text{C} = 16,5$ мм2/с и индекс вязкости = 150.

По таблице 2 вычисляют сходимость и воспроизводимость для кинематической вязкости 16,5 мм2/с интерполяцией между вязкостями 15 и 30 мм2/с.

Индекс вязкости = 100 Индекс вязкости = 200 Сходимость Воспроизводимость Сходимость Воспроизводимость 0,69 1,47 1,08 2,25 По этим данным интерполяцией получают результаты для VI = 150

Таблица 3 Измеренные значения L, D, H для кинематической вязкости

бинематическая вязкость при 100°C, мм2/с	L	D = (L - H)	Н
2	7,994	1,600	6,394
2,10	8,640	1,746	6 , 894
2,20	9,308	1,898	7,410
2,30	10,00	2,056	7,944
2,40	10,71	2,219	8,496
2,50	11,45	2,390	9,063
2,60	12,21	2,567	9,647
2,70	13,00	2,748	10,25
2,80	13,81	2,937	10,87
2,90	14,63		11,50
•		3,132	
3,00	15,48	3,334	12,15
3,10	16,36	3,540	12,82
3,20	17,26	3,753	13,51
3,30	18,18	3,971	14,21
3,40	19,12	4,196	14,93
3,50	20,09	4,428	15 , 66
3,60	21,09	4,665	16,42
3,70	22,10	4,909	17 , 19
3,80	23,13	5,157	17 , 97
3,90	24,19	5,415	18 , 77
4,00	25,32	5,756	19 , 56
4,10	26,50	6,129	20 , 37
4,20	27,76	6,546	21,21
4,30	29,07	7,017	22,05
4,40	30,48	7,560	22,92
4,50	31,97	8,156	23,81
4,60	33 , 52	8,806	24,71
4,70	35,13	9,499	25,63
4,80	36 , 79	10,22	26,57
4,90	38,50	10,97	27,53
5,00	40,23	11,74	28,49
5,10	41,99	12,53	29,46
5,20	43,76	13,32	30,43
5,30	45 , 53	14,13	31,40
5,40	47,31	14,94	32 , 37
5,50	49,09	15,75	33,34
5,60	50 , 87	16,55	34,32
5,70	52 , 65	17,36	35 , 29
5,80	54,42	18,16	36 , 26
5,90	56,20	18,97	37,23
6,00	57 , 97	19,78	38 , 19
6,10	59,74	20,57	39,17
6,20	61,52	21,38	40,15
6,30	63,32	22,19	41,13
6,40	65 , 17	23,03	42,14
6,50	67,13	23,03	43,18
• • • • • • • • • • • • • • • • • • •			
6,60	69 , 16	24,92	44,24
6,70	71,29	25,96	45,33
6,80	73,48	27,04	46,44
6,90	75,72	28,21	47,51
7,00	78,00	29,43	48,57
7,10	80,24	30,63	49,61
7,20	82,39	31,70	50,69
7,30	84,52	32,74	51 , 78
7,40	86,67	33,79	52 , 88

7,50	88,85	34,87	53 , 98
7 , 60	91,03	35 , 94	55 , 09
7,70	93,23	37,01	56 , 20
7,80	95,43	38,12	57 , 31
7,90	97 , 72	39 , 27	58 , 45
8,00	100,0	40,40	59 , 60
8,10	102,3	41,57	60,74
8,20	104,6	42,72	61,89
8,30	106,9	43,85	63,05
8,40	109,2	45,01	64,18
8,50	111,5	46,19	65,32
8,60	113,9	47,40	66,48
8,70	116,2	48,57	67 , 64
8,80	118,5	49,75	68 , 79
8,90	120,9	50,96	69,94
9,00	123,3	52,20	71,10
9,10	125,7	53,40	72,27
9,20	128,0	54,61	73,42
9,30	130,4	55,84	74,57
9,40	132,8	57,10	75,73
9,50	135,3	58,36	76 , 91
9,60	137,7	59,60	78,08
9,70	l .	1	
	140,1	60 , 87	79 , 27
9,80	142,7	62,22	80,46
9,90	145,2	63,54	81,67
10,0	147,7	64,86	82 , 87
10,1	150,3	66,22	84,08
10,2	152,9	67,56	85,30
10,3	155,4	68,90	86,51
10,4	158,0	70,25	87 , 72
10,5	160,6	71,63	88,95
10,6	163,2	73,00	90,19
10,7	165,8	74,42	91,40
10,8	168,5	75,86	92,65
10,9	171,2	77,33	93,92
11,0	173,9	78 , 75	95 , 19
11,1	176,7	80,20	96 , 45
11,2	179,4	81,65	97 , 71
11,3	182,1	83,13	98 , 97
11,4	184,8	84,63	100,2
11,5	187,6	86,10	101,5
11,6	190,4	87,61	102,8
11,7	193,3	89,18	104,1
11,8	196,2	90 , 75	105,4
11,9	199,0	92,30	106,7
12,0	201,9	93 , 87	108,0
12,1	204,9	95,47	109,4
12,2	207,8	97,07	110,7
12,3	210,7	98 , 66	112,0
12,4	213,6	100,3	113,3
12,5	216,6	101,9	114,7
12,6	219,6	103,6	116,0
12,7	222,6	105,3	117,4
12,8	225,7	107,0	118,7
12,9	228,8	108,7	120,1
13,0	231,9	110,4	121,5
13,1	235,0	112,1	122,9
13,2	238,1	113,8	124,2
13,3	241,2	115,6	125,6
13,4	244,3	117,3	127,0
13,5	247,4	119,0	128,4
13,6	250 , 6	120,8	129,8
13,7	253 , 8	122,6	131,2
13,8	257,0	124,4	132,6
13,9	260,2	126,2	134,0
14,0	263,4	128,0	135,4
14,1	266,6	129,8	136,8
	-	. '	

14,2	269,8	131,6	138,2
14,3	273,1	133,5	139,6
	!		·
14,4	276,3	135,3	141,0
14,5	279,6	137,2	142,4
14,6	283,0	139,1	143,9
	1		
14,7	286,4	141,1	145,3
14,8	289,7	142,9	146,8
		• • • • • • • • • • • • • • • • • • •	
14,9	293,0	144,8	148,2
15,0	296,5	146,8	149,7
15,1	300,0	· ·	151,2
	1	148,8	· ·
15 , 2	303,4	150,8	152 , 6
15,3	306,9	152,8	154 , 1
	1		
15,4	310,4	154,8	155 , 6
15 , 5	313,9	156,9	157 , 0
15,6	317,5	158,9	158,6
15 , 7	321,1	161,0	160,1
15,8	324,6	163,0	161,6
	328,3		163,1
15,9	1	165,2	•
16,0	331,9	167,3	164,6
16,1	335,5	169,4	166,1
		• • • • • • • • • • • • • • • • • • •	
16,2	339,2	171,5	167 , 7
16,3	342,9	173,7	169 , 2
16,4	346,5	175,8	170 , 7
	1		
16 , 5	350,4	178,1	172 , 3
16,6	354,1	180,3	173 , 8
	:	• • • • • • • • • • • • • • • • • • •	
16,7	357,9	182,5	175 , 4
16,8	361,7	184,7	177 , 0
16,9	365,6	187,0	178 , 6
	1		
17 , 0	369,4	189,2	180,2
17,1	373,2	191,5	181 , 7
17,2	377,1	193,8	183,3
17,3	381,0	196,1	184 , 9
17,4	384,9	198,4	186 , 5
	1		
17,5	388,9	200,8	188,1
17,6	392,7	203,0	189,7
17,7	396,6	205,3	191,3
	1	· · · · · · · · · · · · · · · · · · ·	
17,8	400,6	207,7	192 , 9
17 , 9	404,6	210,0	194,6
			· ·
18,0	408,6	212,4	196,2
18,1	412,6	214,8	197 , 8
18,2	416,7	217,3	199,4
	1		
18,3	420,7	219,7	201,0
18,4	424,8	222,2	202,6
18,5	429,0	224,7	204,3
	1		
18,6	433,1	227,2	205 , 9
18,7	437,3	229,7	207 , 6
18,8	441,6	232,3	209,3
18,9	445,7	234,7	211,0
19,0	450,0	237,3	212,7
19,1	454,2	239,8	214,4
19,2	458,4	242,3	216,1
19,3	462,7	245,0	217,7
19,4	467,0	247,6	219,4
	:	• • • • • • • • • • • • • • • • • • •	
19 , 5	471,9	250,2	221 , 7
19,6	475,7	252 , 9	222 , 8
19,7	479,7	255,2	224,5
19,8	483,0	257,8	226 , 2
19,9	488,6	260,9	227,7
20,0	493,2	263,7	229 , 5
20,2	501,5	268,5	233,0
20,4	510,8	274,4	236,4
20,6	519,9	279 , 8	240,1
20,8	528,8	285,3	243,5
21,0	538,4	291,3	
			247,1
21,2	547,5	296,8	250 , 7
21,4	556,8	302,6	254,2
21,6	566,4	308,6	257,8
21 , 0	1 500,4	300,0	201,0

21,8	575,6	314,1	261,5
22,0	585,1	320,2	264,9
22,2	595,0	326,4	268,6
22,4	604,3	332,0	272 , 3
22,6	614,2	338,4	275 , 8
22,8	624,1	344,5	279 , 6
23,0	633,6	350 , 3	283 , 3
23,2	643,4	356 , 6	286,8
23,4	653 , 8	363,3	290 , 5
23,6	663,6	369,0	294,4
23,8	673,6	375,7	297,9
24,0	683,9	382,1	301,8
24,2	694,5	388,9	305,6
24,4	704,2	394,8	309,4
24,6	714,9	401,9	313,0
24,8	725,8	408,8	317,0
25,0	736,5	415,6	320 , 9
25,2	747,3	422,4	324,9
25,4	758,3	429,5	328 , 8
25,6	769,3	436,6	332 , 7
25,8	779,7	443,0	336 , 7
26,0	790,3	449,8	340,5
26,2	801,6	457,2	344,4
26,4	812,8	464,4	348,4
26,6	824,1	471,8	352,3
26,8	835,5	479,1	356,4
27,0	847,1	486,6	360,5
27,2	857 , 5	492,9	364,6
27,4	868,9	500,6	368,3
27,6	880,6	508,3	372 , 3
27,8	892,3	515,9	376,4
28,0	904,1	523,5	380,6
28,2	915,9	531,3	384,6
28,4	927,6	538,8	388,8
28,6	938,7	545,7	393,0
28,8	951,4	554,5	396 , 6
29,0	963,4	562,3	401,1
29,2	975,4	570,1	405,3
29,4	987,1	577 , 6	409,5
29,6	998,8	585,3	413,5
29,8	1011	593,4	417,6
30,0	1023	601,6	421,7
30,5	1055	622,3	432,4
31,0	1086	643,2	443,2
31,5	1119	664,5	454,0
32,0	1151	686,0	464,9
32,5	1184	708,0	475 , 9
33,0	1217	730,2	487,0
33,5	1251	752,8	498,1
34,0	1286	776,8	509,6
34,5	1321	799,9	521,1
35,0	1356	823,4	532 , 5
35,5	1391	847,2	544,0
36,0	1427	871 , 2	555 , 6
36,5	1464	896,5	567 , 1
37,0	1501	921,8	579 , 3
37,5	1538	946,8	591,3
38,0	1575	972,3	603,1
38,5	1613	998,3	615,0
39,0	1651	1024	627,1
39,5	1691	1052	639,2
40,0	1731	1079	651,8
40,5	1770	1106	664,2
41,0	1810	1133	676,6
41,5	1851	1162	689,1
42,0	1893	1191	701,9
42,5	1935	1220	714,9

1 42.0	1 1070	1050	700 0
43,0	1978	1250	728,2
43,5	2021	1280	741,3
44,0	2064	1310	754 , 4
44,5	2108	1340	767 , 6
45,0	2152	1371	780 , 9
45,5	2198	1403	794 , 5
46,0	2242	1434	808 , 2
46,5	2288	1466	821 , 9
47,0	2334	1498	835,5
47,5	2379	1530	849,2
48,0	2426	1563	863,0
	!	!	
48,5	2473	1596	876 , 9
49,0	2521	1630	890,9
49,5	2570	1665	905 , 3
50,0	2619	1699	919,6
50,5	2667	1733	933 , 6
51,0	2717	1769	948,2
51,5	2767	1804	962 , 9
52,0	2817	1839	977,5
52,5	2867	1875	992,1
53,0	2918	1911	1007
53,5	2968	1947	1021
54,0	3020	1984	1036
54,5	3073	2022	1051
55,0	3126	2060	1066
55,5	3180	2098	
	l .	1	1082
56,0	3233	2136	1097
56,5	3286	2174	1112
57,0	3340	2213	1127
57,5	3396	2253	1143
58,0	3452	2293	1159
58,5	3507	2332	1175
59,0	3562	2372	1190
59,5	3619	2413	1206
60,0	3676	2454	1222
60,5	3734	2496	1238
61,0	3792	2538	1254
61,5	3849	2579	1270
62,0	3907	2621	1286
62,5	3967	2664	1303
63,0	4026	2707	1319
63,5	4087	2751	1336
64,0	4147	2795	1352
64,5	4207	2858	1369
65,0	4268	2382	1386
65,5	4329	2927	1402
66,0	4323	2973	1419
66,5	4392	3018	1436
67,0	4518	3064	1454
· ·			
67,5	4581	3110	1471
68,0	4645	3157	1488
68,5	4710	3204	1506
69,0	4773	3250	1523
69,5	4839	3298	1541
L	L	L	L

5.4. Протокол испытания

Протокол испытания должен содержать данные:

- а) тип и идентификацию испытуемого продукта;
- б) ссылку на настоящий стандарт;
- в) результаты испытания;
- г) какой метод был использован А или В;
- д) любое отклонение по соглашению или по другим документам от установленного метода;
- е) дату испытания.